Multiplexed Microcolumn-Based Process for Efficient Selection of RNA Aptamers
نویسندگان
چکیده
We describe a reusable microcolumn and process for the efficient discovery of nucleic acid aptamers for multiple target molecules. The design of our device requires only microliter volumes of affinity chromatography resin-a condition that maximizes the enrichment of target-binding sequences over non-target-binding (i.e., background) sequences. Furthermore, the modular design of the device accommodates a multiplex aptamer selection protocol. We optimized the selection process performance using microcolumns filled with green fluorescent protein (GFP)-immobilized resin and monitoring, over a wide range of experimental conditions, the enrichment of a known GFP-binding RNA aptamer (GFPapt) against a random RNA aptamer library. We validated the multiplex approach by monitoring the enrichment of GFPapt in de novo selection experiments with GFP and other protein preparations. After only three rounds of selection, the cumulative GFPapt enrichment on the GFP-loaded resin was greater than 10(8) with no enrichment for the other nonspecific targets. We used this optimized protocol to perform a multiplex selection to two human heat shock factor (hHSF) proteins, hHSF1 and hHSF2. High-throughput sequencing was used to identify aptamers for each protein that were preferentially enriched in just three selection rounds, which were confirmed and isolated after five rounds. Gel-shift and fluorescence polarization assays showed that each aptamer binds with high-affinity (KD < 20 nM) to the respective targets. The combination of our microcolumns with a multiplex approach and high-throughput sequencing enables the selection of aptamers to multiple targets in a high-throughput and efficient manner.
منابع مشابه
Highly Multiplexed RNA Aptamer Selection using a Microplate-based Microcolumn Device
We describe a multiplexed RNA aptamer selection to 19 different targets simultaneously using a microcolumn-based device, MEDUSA (Microplate-based Enrichment Device Used for the Selection of Aptamers), as well as a modified selection process, that significantly reduce the time and reagents needed for selections. We exploited MEDUSA's reconfigurable design between parallel and serially-connected ...
متن کاملHigh-throughput binding characterization of RNA aptamer selections using a microplate-based multiplex microcolumn device
We describe a versatile 96-well microplate-based device that utilizes affinity microcolumn chromatography to complement downstream plate-based processing in aptamer selections. This device is reconfigurable and is able to operate in serial and/or parallel mode with up to 96 microcolumns. We demonstrate the utility of this device by simultaneously performing characterizations of target binding u...
متن کاملRNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers
Nucleic acids play different roles besides storing information and proteins coding. For example, single-stranded nucleic acids can fold into complicated structures with capability of molecular detection, catalyzing bioreactions and therapy. The development of RNA-based therapies has been rapidly progressed in the recent years. RNA aptamers are biomolecules with a size of 10 to 50 nm that can be...
متن کاملReal-Time PCR: an Appropriate Approach to Confi rm ssDNA Generation from PCR Product in SELEX Process
Background: Aptamers are single stranded DNA (ssDNA) or RNA molecules. The potential of aptamers for binding to the different targets has made them be widely used as the preferred diagnostic and therapeutic tools. DNA aptamers present several advantages over the RNA oligonucleotides due to their higher stability, easier selection, and production. Selection of DNA aptamers which...
متن کاملآپتامرها و کاربردهای بیولوژیکی-درمانی آنها
Aptamers are the artificial single-stranded DNA or RNA sequences (more recently, peptides) that fold into secondary and tertiary structures making them bind to certain targets with extremely high specificity. Aptamers were reported for the first time in 1990, a number of their unique features make them a more effective choice than antibodies. Aptamers typically generated through Systematic Ev...
متن کامل